NAVIGATING THE 5G FRONTIER:

OVERCOMING CHALLENGES TO SUCCESSFULLY DEPLOY

NEXT-GENERATION WIRELESS NETWORKS

Gwennael Amice () Subject Matter Expert/Senior Member of Technical Staff

Sophie Legault Director Product Management April 2023

2023: 5G Deployments

5G Standalone Deployments

Markets with commercial stand-alone 5G services, December 2022

Kagan, a media research group within the TMT offering of S&P Global Market Intelligence. @ 2023 S&P Globa

3GPP and industry evolution

Network densification

- More cell sites and small cells
- Huge 5G C-Band buildouts
- Historic fiber buildout effort
- Pressure to hit the dates!

Next phase of 5G

- Shift to 5G SA and 5G core
 - Low latency and network slicing
 - Edge and Azure, Google, AWS
 - Timing is critical

RAN/Mobile Market Trends

Adoption of Open RAN

- Open, intelligent, virtualized RAN
- EXFO contributor since Feb 2019
- 1&1, BT, DT, Orange, Vodafone,
 Virgin Media O2, TEF

- IoT and industrial verticals
 - Private network and URLLC
 - Automotive, smart factory, etc
 - Mission critical applications are key opportunity for operators

© 2023 EXFO Inc. All rights reserved.

Private 5G: CAGR of 49% from 2022 to 2030

Manufacturing/Industry 4.0

Mining

Power/Utilities

Smart Seaports/Airports Warehouse/Supply chain Connected healthcare

Fiber density

~100x more fibers

5G is a mix of multiple frequencies bands

5G RAN is Diverse

64T64R Mid-band 4x4 Low-Bands Urban Rooftop

Rural Coverage 700MHz, DSS

mmWave Relay

<u>Source:</u> Pivotal Commware

mmWave on a Macro site *Source: @olkitu*

Outdoor mmWave DU/RU, vCU

Source: Airspan, Rakuten

mmWave Stadium

8T8R Mid-band Urban Macro Source: @pedroclarke1, Commscope, Nokia

Indoor 5G

Source: Ericsson

reserved. 9

Impacts on transport from 5G RAN

Source: Ericsson

5G key summary requirements

Latency > 10x decrease URLLC : < 1ms E2E

> 10x increase eMBB : 1 Gbit/s (20 Gbit/s peak)

....

© 2023 EXFO Inc. 20190144 **11**

5G deployments challenges

Meet deadlines

Do more with less

RF eCPRI DAS ronthaul Backha **5**G **CPRI**

Complex mix of architectures and technologies

5G field measurements

5G and RF main challenges in field testing

4

Fiber & transport check

2 Spectrum Verification

Synchronization and 5G RF performance

BS Validation

© 2023 EXFO Inc. All rights reserved 14

5G and RF main challenges in field testing

CHALLENGES

Slow cell sites and small cell rollouts Radio and link issues Back-and-forth between cell sites Finger pointing.

SOLUTIONS

FIP automatically detects dirty or damaged fiber connectors

iOLM automatically identify location of fiber issues CPRI/eCPRI/Ethernet link validation to confirm proper operation of the radio

Use case

3

Fiber is the foundation of 5G Check, clean, check, connect, test, repeat...

5G fiber exhaustion – DWDM

CHALLENGE | SOLUTION RESULTS

Fast solution to fiber exhaustion

Uses existing fiber, saving time and money

Validate power per channel/sector

XHaul testing in 5G technologies

5G and RF main challenges in field testing

Fiber & transport check

3

2 Spectrum Verification

Synchronization and 5G RF performance BS Validation

Spectrum Verification: spectrum clearing

CHALLENGES

2

5G will use some new bands, like C-Band, 700 MHz band and mmWave bands.

Some of them had a prior use and MNO's need to verify the spectrum is clean and BS can be deployed.

SOLUTIONS

Full spectrum analysis needs to be performed to check the bands are clean and within limits.

Check RSSI levels to verify spectrum is clean

Use case

NETWORK DEPLOYMENT

Spectrum Verification: interference finding

CHALLENGES

2

Interferences falling in our channel with a bursty signal like 5G troubleshooting can turn difficult.

With a regular spectrum analyzer, config can be tedious and we can even miss some signals.

SOLUTIONS

RTSA can show those signals masked inside our channel with a different color density, and also show transient signals that change very fast in time..

Time gating can also help in troubleshooting

Use case TROUBLESHOOTING

Using RTSA without any settings we can see quickly the interferers.

Spectrum verification: Interference finding

CHALLENGES

2

?

A TDD base station uses some slots to transmit and some slots to receive signals from UE. The challenge of this approach is to validate the UL channel is free of interferences, considering we have the BS transmitted signal in the same frequency as the UL.

SOLUTIONS

TDD gated sweep to switch the spectrum to power vs. time and lock onto a specific uplink to look for any RF interference

Use case

TROUBLESHOOTING

Spectrum verification: Interference finding

CHALLENGES

2

A TDD base station uses some slots to transmit and some slots to receive signals from UE. The challenge of this approach is to validate the UL channel is free of interferences, considering we have the BS transmitted signal in the same frequency as the UL.

SOLUTIONS

TDD gated sweep to switch the spectrum to power vs. time and lock onto a specific uplink to look for any RF interference

Use case

5G and RF main challenges in field testing

Spectrum Verification

Synchronization and 5G RF performance **BS Validation**

2

© 2023 EXFO Inc. All rights reserved 26

Verification of the grid of beams (SSB burst) 3 LTE/5G macro **CHALLENGES** As antennas getting more complex with 5G mmW/sub multiple technology : mMIMO, Converged access 6Ghz Beamforming, active antennas. micro H Fthernet eMBB The challenge for MNOs is how to make eCPR URLLC sure radio unit is working properly and mMTC that all beams are transmitted correctly, CPRI & eCPRI as well as verifying the power profile makes sense LTE/5G mmW Use case pico DEPLOYMENT

SSB : synchronisation signal Bloc

Verification of the grid of beams (SSB burst)

SOLUTIONS

3

A quick check of power parameters in SSB we can realize whether all beams are being transmitted or not

For example, at 3.5 GHz, if a base station is transmitting all 8 beams, we should receive RSRP, RSRQ and SINR for all SSB's (from 0 to 7)

Use case

DEPLOYMENT

Application 5GNR SIGNAL ANALYZER

5G and RF main challenges in field testing

4

Fiber & transport check

3

Spectrum Verification

Synchronization and 5G RF performance

BS Validation

2

© 2023 EXFO Inc. All rights reserved 29

?)

CHALLENGES

4

Timing issues dramatically impact performance of 5G networks:

- TDD Issues between UE and BS
- Cell sites interfering with each other
- Handover issues

Primary reference time clock (PRTC) Telecom grandmaster (T-GM) Telecom boundary clocks (T-BC) Telecom time slave clocks (T-TSC)

4

0

CHALLENGES

4

Timing issues dramatically impact performance of 5G networks:

- TDD Issues between UE and BS
- Cell sites interfering with each other
- Handover issues
- Carrier aggregation

SOLUTIONS

1588, SyncEthernet and Wander applications will be key to understand synchronization performance

Time Error (TE) measurement OtA will help understand status of network synchronization status in the air interface.

Measuring |TE|_{antenna} uses the same principles as TE over the network. Only the signal under test is different. It requires demodulating the carrier to extract the start of radio frame and compare it to a reference that is extracted from the GNSS receiver

The GNSS receiver must be stationary for the 1PPS to be valid

4

LTE/5G mmW pico

4

Implementation

л RF S	pectrum Analyzer - 2					- 0 ×				
EX	FO					(i) About (?) Help				
≡	RF Spectrum Analyzer	5GNR Analyzer	FR1 (450MHz to 6GHz)	B T		• • •				
>	Sync X GSCN: 8003 Center Frequency: 3.725760 GHz									
Ŷ		PCI Filtering	Strongest *		Beam ID Beams Te Reset					
~	Antenna Cable Delay (ns) O	PCI [Beam ID]	SS-RSRP (dBm)	SS-RSRQ (dB) ↓	SS-SINR (dB)	Max TE _{ant} (ns)				
		906 [3]	-93.52	-9.69	12.95	18087				
<··>		833 [6]	-91.36	-9.96	12.26	6199				
	Distance Compensation	569 [4]	-92.80	-10.22	13.23	25543				
0		569 [5]	-91.98	-10.29	14.81	25543				
_		-		-		-				
		-		-						
		-	-		-	-				
		-		-						
		-	-		-					

Θ

Implementation

RF Spe EXF ≡ >	rtum Analyzer - 2 C RF Spectrum Analyzer Sync X	Mode 5GNR Analyzer GSCN: 8003 Cer PCI	Module Selection Port FR1 (450MHz to 6GHz) B Inter Frequency: 3.725760 GHz	·	Beam ID	C TE max: 1.5 us CTE/50 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	G
	TE Antenna Cable Delay (ns)	Filtering PCI [Beam ID] 906 [3]	Strongest SS-RSRP (dBm) -93.52	SS-RSRQ (dB) ↓ -9.69	Filtering SS-SINR (dB) 12.95	M ⁷ 1 8F Spectrum Analyzer - 2 12 EXFO	- 🗗 🗙
<i>⇔</i>	Distance Compensation	833 [6] 569 [4] 569 [5]	-91.36 -92.80 -91.98	-9.96 -10.22 -10.29	12.26 13.23 14.81	6 ← Go Back GNSS 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	0 :
		-	-	-	-	 Constellation: ² GPS ² Galileo ² GLONASS ² Band ² L1 + L2 ² UTC ² Auto ² Auto ² Status ² Fixed Mode ² Status ² Status	
		-	-	-		- Position Mode UTC Variant USNO - Survey-In # of Satellites 28 - Coordinates - - Latitude (den) 40.4407278	
						Cable Belay (ns) Desired Accuracy Longitude (deg) -3.7963688 Longitude (deg) -3.7963688 Altitude (m) 714.905	
						Protect GO 35 35 35 44 47 45 43 44 43 45 41 46 38 44 39 43 36 44 43 42 39 43 36 44 43 42 39 43 36 44 43 42 39 43 36 44 43 42 39 43 36 44 43 42 39 43 36 44 43 42 34 42 39 43 36 44 43 42 39 43 36 44 30 35 44 43 42 39 43 36 44 30 35 36 44 30 35 36 44 30 35 36 44 30 35 36 44 30 35 36 44 30 35 36 44 30 35 36 36 <t< td=""><td></td></t<>	

-

Implementation

7: RF Spectrum Analyser - 2 EXFO						() A	- J X () About (2) Help					
≡	RF Spectrum Analyzer	Mode Module Selection Port SGNR Analyzer FR1 (450MHz to 6GHz) B			🛛 🖸 💰 🕴 🛛 TE max: 1.5 us 🖛 🗖					-		
>	Sync ×	GSCN: 8003 Center Fre	quency: 3.725760 GHz									
Ŷ	TE	Filtering	rongest 🔻		Beam ID Filtering	Beams	Te Reset					
~		PCI [Beam ID]	SS-RSRP (dBm)	SS-RSRQ (dB) ↓	SS-SINR (dB)	M RF Spectrum	Analyzer - 2					- 0 X
	Antenna Cable Delay (ns) O	906 [3]	-93.52	-9.69	12.95						(i) A	bout (?) Help
<··>		833 [6]	-91.36	-9.96	12.26	6' ← Go Bac	k Distance Compens	sation			Distance	o 🦑 :
	Distance Compensation	569 [4]	-92.80	-10.22	13.23	2. Add Single	PCI					Unit
0		509.[5]	-91.98	-10.29	14.81	2: 0	+ Add Decoded PCIs	X Delete			Coordinates	Meter
_		-		-		-	PCI ↑	Distance (m)	Latitude (deg)	Longitude (deg)	Altitude (m)	
		-										
		-				-	569		0.000000	0.0000000	0.00	
						-	833		0.000000	0.000000	0.00	
		-	-	-	-	_						
		-					906		0.000000	0.000000	0.00	

Distance compensation: The 1.5us is referenced at the tower antenna directly. As it is not practical to perform the measurement directly up the tower but rather some distance away under the coverage, the propagation delay (distance to antenna) must be compensated. @3.33ns per m

5G and RF main challenges in field testing

Fiber & transport check

3

Spectrum Verification

Synchronization and 5G RF performance BS Validation

2

© 2023 EXFO Inc. All rights reserved 39

Application

TROUBLESHOOTING iORF/ SPECTRUM ANALYZER

RF over CPRI on 4G/LTE Uplink

CPRI Communication Flows

Mobile Communication IP $\leftarrow \rightarrow$ Digital RF $\leftarrow \rightarrow$ Analog RF

5G NSA bad RSSI levels

CHALLENGES

Looking across the BW of a site, multiple interferers can be identified, and the challenge is determining which one is affecting the site under test.

Most installations, access to the RF segment is challenging, so different method of testing Is needed

SOLUTIONS

Analyze spectrum over CPRI with iORF to look for issues and determine whether internal or external. If external, user regular Spectrum Analyzer to hunt.

Use case Application TROUBLESHOOTING iORF/ SPECTRUM ANALYZER

Uplink or Downlink?

Glossary

- RTSA: Real time spectrum analyzer
- RSSI : Received signal strength indicator.
- TDD: Time domain division
- eMBB (enhanced Mobile Broadband)
- URLLC (Ultra Reliable Low Latency Communications)
- mMTC (massive Machine Type Communications)
- SSB : synchronisation signal Bloc
- CSI-RS SINR: Channel State Information Reference Signal-to-noise and interference ratio
- PDSCH SINR: Physical Downlink Shared Channel Signal-to-noise and interference ratio
- SS-SINR: SS signal-to-noise and interference ratio (in the SSB)
- SS-RSRP: Synchronization Signal reference signal received power
- SS-RSRQ: Secondary synchronization Signal Reference Signal Received Quality
- SSS : secondary sync signal
- PSS: Primary sync signal
- PBCH: Physical Broadcast channel
- AoA: angle of arrival
- ToA: time of arrival

TDD: Time Division Duplex FDD Frequency Division Duplex PTP: Precision Time Protocol PCI: Physical cell ID

Ref:

https://www.youtube.com/watch?v=lixbalEPglQ

Questions?

© 2023 EXFO Inc. All rights reserved. 46